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ABSTRACT

 Insight into a material’s high temperature mechanical and microstructural properties can be
gained from knowledge of its elastic moduli.  For a single-crystal material, the elastic modulus,
Cijkl , provides information on the strain (εkl) - stress (σij ) relationship given by σij = Cijkl •εkl.  This
relationship shows that, for a given strain, a large elastic modulus will induce a large stress in the
material.  In regards to mechanical properties, the crystallographic axis with the largest elastic
modulus is the most likely for failure to occur.  Before any IR transparent material can be
considered for application in a high stress environment, such as IR dome applications, the elastic
moduli must be known.

Laser-based ultrasonics provides a non-contact, non-destructive means of measuring the
elastic moduli of IR transparent materials in an elevated temperature environment.  In this paper,
the application of laser ultrasonics to IR materials characterization is reviewed.  Specific
calculations for determining the elastic moduli for isotropic and trigonal crystal symmetries, as
exhibited by single-crystal sapphire, are presented.  Measurements of the elastic moduli as a
function of temperature for borosilicate glass and fused silica, elastically isotropic materials, are
presented.  In addition, a room-temperature ultrasonic measurement of germanium (Ge), an
elastically anisotropic material, is shown.

1.0 INTRODUCTION

 The high temperature behavior of infrared (IR) transparent materials is not well understood owing
to the wide-ranging property variations.  For high stress environments, such as those encountered by IR
missile domes, the IR material’s mechanical properties must be known.  A critical figure of merit for
determining the suitability of candidate IR dome materials is the thermal shock resistance.  A material’s
thermal shock resistance, R, is proportional to

(1)

where S is the mechanical strength, ν is the Poisson’s ratio, and E is the elastic modulus.  Both the
mechanical strength and elastic moduli are known to be highly temperature dependent.  Therefore, both
must be known for a complete understanding of the material’s high-temperature behavior.  The most
common means of measuring the mechanical strength of a material is through fracture tests, which provide
information on the applied load necessary to induce fracture in the material [1].  For brittle materials, such
as ceramics, these tests are heavily dependent on the surface quality of the specimen.  Any surface cracks
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or abrasions can lead to premature failure of the sample, indicating lower fracture toughness.  For this
reason, a statistically large number of samples are typically tested to establish a mean fracture strength [2].
The elastic modulus, E (or Cijkl  for a single-crystal material), is a measure of the linear relation between the
applied strain and the resulting stress in a material.  Means for measuring the elastic moduli of a material
include both static (i.e. flexure) and dynamic (i.e. vibrational or ultrasonic) [2].  Static flexure tests suffer
from nonuniform stress distribution and a stress distribution that changes with increasing strain if some
plastic deformation occurs.  These considerations limit the accuracy of the elastic moduli measurement to a
few percent.  Dynamic methods, such as ultrasonics, can achieve better than an order of magnitude greater
accuracy than static methods [2].

  In ultrasonics, the velocities of the longitudinal and shear waves are measured, which allow the
elastic moduli to be determined.  In anisotropic materials, up to three bulk acoustic waves can be supported,
each with its own characteristic velocity.  Conventional ultrasonics uses a contact transducer to both
generate and detect the ultrasonic waves [3].  Unfortunately, the lack of high-temperature transducer
couplant limits the maximum temperature at which contact ultrasonic measurements can be made.  In an
effort to extend the temperature range over which contact ultrasonic measurements can be made, Papadakis
et al. [4] developed a momentary contact technique.  In this technique, a long, cool buffer rod is placed in
momentary contact (∼100 ms) with the sample.  A contact transducer mounted on the end of the rod is then
used to both transmit the ultrasonic signal and receive the ultrasonic echo.  This technique has successfully
measured the elastic properties of materials up to 1200 °C.

 Laser based ultrasonics replaces the contact transducer, used for generation, with a short laser
pulse.  When the laser pulse interacts with the sample, both reflection and absorption occur.  As a result of
absorption, temperature gradients are established within the solid, which produce a rapidly changing strain
field.  This strain field, in turn, radiates energy as elastic (ultrasonic) waves.  At low pulse energies, this is
an entirely thermoelastic process (i.e. non-destructive).

 Optical detection of the ultrasonic arrivals provides a complementary non-contact technique for
high-temperature ultrasonic measurements.  Two common methods are optical beam deflection and
interferometric detection [5].  Optical beam deflection focuses a laser onto the surface of the specimen and
knife-edges the reflected beam onto a detector.  When the ultrasonic wave arrives, it causes a small surface
displacement, deflecting the focused beam and varying the optical power reaching the detector.  In
interferometric detection, the surface displacement from the ultrasonic arrival varies the optical path length
of one arm of the interferometer.  This path length variation causes a corresponding change in the phase of
the optical signal.  The interferometer converts this phase change to intensity variations, which can then be
measured directly (see Figure 1).

Figure 1.  Ultrasonic measurement using a pulsed-laser for ultrasonic wave generation and a Michelson-
type interferometer for ultrasonic wave detection.

longitudinal
wavefront

shear
wavefront

laser
pulse

laser

beamspitter

reference
mirror

detector

ultrasonic
displacement

sample

enlarged view of
ultrasonic wave arrival

Michelson-type
interferometer



2.0 THEORY

 In general, three different bulk elastic waves may propagate in any given direction in an
anisotropic material.  In general, these waves are not pure modes, that is, they contain displacement
components both parallel and perpendicular to the wavefront normal.  The governing equation for stress
wave propagation in an elastic solid is given by [6,7]

(2)

where σij  is the stress tensor, Χi is the body force, ρ is the material density, and ui is the displacement
vector.  For an elastic anisotropic solid, the stress is linearly related to the strain (εkl) through the elastic
modulus (Cijkl ).

(3)

The symmetric strain for a material can be defined in terms of displacements as
(4)

Substituting Eq. 4 into Eq. 2 yields (due to the symmetric nature of the elastic modulus)

(5)

Now, due to the symmetric nature of the elastic modulus (with Cijkl  = Cklij  = Cjikl  =, …), Eq. 4 can be
reduced to

(6)

The wave equation can now be written in terms of the displacement vectors.  Under the assumption of no
body forces, Χi = 0:

(7)

For bulk wave propagation, the form of the displacement vector is given by
(8)

where A0 is the displacement amplitude, αk is the direction cosine of the displacement vector, ω is the
angular frequency, and km is the wave vector.  Rewriting the wave vector in terms of the direction cosines,
lm, of the normal to the wave front yields

(9)

Substituting Eq. 8 into Eq. 7 yields
(10)

which can be rewritten, when ui = δikuk and δik = kronecker delta function, as

(11)
Since the components of the displacement vector in Eq. 11 are not necessarily equal to zero, the expression
that proceeds it must be identically equal to zero such that

(12)
Rewriting Eq. 12 in terms of its components:

(13)
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Recalling that the elastic modulus relates the symmetric stress to the symmetric strain, the maximum
number of matrix elements is reduced to 21.  Further reduction occurs when a specific crystallographic
system is chosen.  For an isotropic material, such as a glass or any polycrystalline ceramic, the number of
independent elastic moduli reduces to two [8].  For wave propagation along the +x1 direction (see Figure
2), the direction cosines for the specimen axis (SA) reduce to:

l1 =  sinθcosφ = 1;
l2 = sinθsinφ = 0;
l3 = cosθ.

Figure 2.  System of wave propagation.

Therefore, for an isotropic material, Eq. 13 reduces to (using reduced notation [8] for the elastic modulus)

(14)

Solving for Eq. 14 yields two propagation velocities, one longitudinal and one shear, given by

(15)

where λ is the Lamé constant and µ is the shear modulus.  Therefore, by measuring the arrival times of the
longitudinal and shear waves and having knowledge of the sample’s thickness, the two elastic constants for
an isotropic material to be determined.  This shows that only a single sample is required for complete
characterization of the elastic moduli of an isotropic material.

 The lower symmetry of crystalline materials increases the number of moduli that must be
determined.  One of the most common crystalline materials for high stress environments is single crystal
sapphire.  Single-crystal sapphire displays trigonal symmetry, increasing the number of independent elastic
moduli components to six.  This greatly increases the complexity of the determinant (Eq. 12) which must
be solved.  Following the presentation by Wachtman et al. [9], the determinant can be written in the form

(16)
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Following a similar procedure to that outlined above for isotropic materials, propagating a stress wave
along the c-axis (i.e. along +x3 with θ = 0° and ϕ = 90°) yields two characteristic wave velocities given by

(17 )

(18)

This allows for the determination of C33 and C44.  Propagation along the m-xis (i.e. along +x2 with θ = 90°
and ϕ = 90°) yields three ultrasonic wave arrivals.  These waves provide information on C11, C12 and C14.

(19)

(20)

To completely determine these elastic moduli, ultrasonic waves can be propagated along the a-axis (i.e.
along +x1 with θ = 90° and ϕ = 0°).  As with propagation along the m-axis, three ultrasonic wave arrivals
are detected with characteristic velocities of

(21)

(22)

These velocity measurements allow for five of the six elastic moduli for single-crystal sapphire to be
measured.  The remaining elastic moduli, C13, can be measured by propagating the ultrasonic waves off of
one of the crystallographic axis (i.e. at  θ = 45° and ϕ = 0°).  Thus, by choosing three appropriately oriented
samples, all of the elastic constants can be determined.

3.0 EXPERIMENT

 The materials chosen for this work included fused silica, borofloat borosilicate, and single-
crystal sapphire.  While all of these are transparent in the IR, they possess very different elastic properties.
The fused silica and borofloat borosilicate are both amorphous materials and, therefore, elastically
isotropic in nature.  In contrast, single-crystal sapphire displays trigonal symmetry.  The approximate IR
transmission band and other physical properties for each of these materials are listed in Table 2.

Table 1.  IR transmission band for selected materials [10]

Transmission
Band [µm]

Material

Begin End

Density

[g/cm3]

Melt.
Temp.
[°C]

Therm.
Cond.
[W/m°C]

Therm.
Expansion
[1/°C]

fused silica 0.2 4.5 2.202 990‡ 1.6* 0.75x10-6 **
borofloat borosilicate 0.3 3 2.2 450 1.12 3.25x10-6

single-crystal sapphire (0°) 0.15 6 3.98 2027 35.1† 5.6x10-6 †

single-crystal sapphire (90°) 0.15 6 3.98 2027 33.0† 5.0x10-6 †

germanium (optical grade) 1.2 15 5.35 937 165.8 2.4x10-6 †

* at 373 K, ** at 423 K, ‡ glass transition temperature, † at 300 K

 The experimental set-up used to measure the elastic constants, as a function of temperature, is
shown in Figure 3.  Samples were placed in the center of the high-temperature furnace, which has optical
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access ports on two sides.  A pulsed Nd:YAG laser (1.064 µm) with a 20 ns pulse duration (FWHM) was
used to generate the ultrasound on the backside of the sample.

 Due to the IR transparent nature of the materials, each was coated with a 50 nm TiW film to aid in
the generation and detection of ultrasound.  It is important that the laser pulse be absorbed at the surface for
the generation of the high-frequency ultrasound needed for precise measurement of wave arrival times. The
absorption coefficient for tungsten at 1.064 µm is given by

(23)

where κ is the extinction coefficient of tungsten at 1.1 µm.  This absorption coefficient corresponds to an
absorption depth of about 21 nm.  It should be noted that these films are thin enough that they do not
interfere with the ultrasonic wave propagation as their thickness is far less than that of a typical generated
ultrasonic wavelength.  For fused silica, for example, ultrasonic velocities are on the order of 5 mm/µs,
corresponding to a minimum wavelength of 0.17 mm at 30 MHz.  In the future, a pulsed CO2 laser, which
is highly absorbed by each of the materials, will be used for ultrasonic generation.  This will alleviate the
need for the TiW coating.

 A stabilized Michelson-type interferometer [3] is used to detect the ultrasonic wave arrival.  This
type of interferometer is sensitive to displacements normal to the surface and is inherently uniform in its
frequency response characteristics.  The output signal of the interferometer was captured using a digital
oscilloscope, which was triggered by the arrival of light scattered from the generation laser pulse.   The
bandwidth for these measurements was limited to less than 30 MHz.

Figure 3.  Experimental set-up for high-temperature ultrasonic measurements.

4.0 RESULTS

 Results for epicentral laser ultrasonic waveforms in borofloat borosilicate, at three different
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attributed to variations in the elastic moduli of the material as a function of temperature.  As shown in Eq.
15, the Lamé constant and shear modulus can be calculated from knowledge of the two wave velocities.  A
plot of the Lamé constant and shear modulus, as a function of temperature, is given in Figure 5.  At 325 °C,
there is a sharp drop in the moduli, indicating a possible microstructural change in the material.  This may
be attributed to a rearrangement of the boron ions in the glass.  These modulus values are typical for
borosilicate glasses [12].

Figure 4.  Ultrasonic waveforms for borofloat borosilicate
as a function of temperature.

Figure 5.  Variations in elastic moduli of borofloat borosilicate
as a function of temperature.

 Similar measurements were made for fused silica, which has a much higher operating
temperature.  Figure 6 shows a plot of the elastic moduli as a function of temperature.  Unlike the moduli
for the borosilicate glass, these measurements show a constant increase in the elastic moduli.  To avoid
oxidation of the Ti/W film at these higher temperatures, a reducing atmosphere (5% Hydrogen/95% Argon
mixture) was flowed through the furnace.
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Figure 6.  Variations in elastic moduli of fused silica
as a function of temperature.

 Each of the above samples is transmissive over the visible to the mid-IR spectrum.  However,
Ge’s transparency begins at about 1.2 µm and extends to the far-IR.  Due to its high-absorption at 1 µm, the
TiW film was not needed for ultrasound generation.  The addition of the TiW film for the previous
samples, although allowing for ultrasound generation using the Nd:YAG laser, limited the amount of pulse
energy that could be used before ablating the film.  This ablation limit contributed to the poor SNR of the
previously shown waveforms.  A room temperature ultrasonic waveform for Ge is given in Figure 7.  The
improved SNR is readily apparent and this waveform shows a distinct longitudinal arrival and two shear
arrivals.  Germanium has a cubic crystal class with a diamond crystal structure.  The diamond crystal
structure is anisotropic with three elastic moduli.  It is this anisotropy that leads to the two shear wave
arrivals.

Figure 7.  Room temperature ultrasonic waveform for Ge.

5.0 CONCLUSIONS

 The application of laser ultrasonics to the measurement of the high temperature elastic moduli of
IR transparent materials has been presented.  Knowledge of a material’s elastic moduli and mechanical
strength allow for its thermal shock resistance to be determined.  The thermal shock resistance is an
important parameter to determine a material’s suitability for IR dome applications.  Calculations for
isotropic and trigonal materials have been presented.  These calculations show that at most three samples,
with specified crystallographic orientations, are required for the determination of all six elastic moduli in
sapphire.  Measurements of the elastic moduli, as a function of temperature, of two IR transparent
materials, borofloat borosilicate and fused silica, are given.  Measurements in the borosilicate glass show
a sudden drop in the elastic moduli at about 225 °C.  This is believed due to motion of the boron atoms in
the glass structure.  In contrast, the elastic moduli of the fused silica are shown to increase slightly as the
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temperature is increased.  Both of these measurements suffered from relatively poor SNR due to the
ablation threshold of the TiW film.  Using a pulsed laser that is highly absorbed by the samples would
alleviate the need for the film and allow for more pulse energy to be used in ultrasonic generation.  A room
temperature ultrasonic measurement for Ge was also presented.  This waveform has a much improved SNR
due to its better absorption characteristics at the Nd:YAG pulse wavelength.  In addition, the measurement
clearly shows two shear wave arrivals due to the diamond crystal structure of the sample.  Work is
currently underway to make high-temperature elastic moduli measurements on single-crystal sapphire
samples.
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